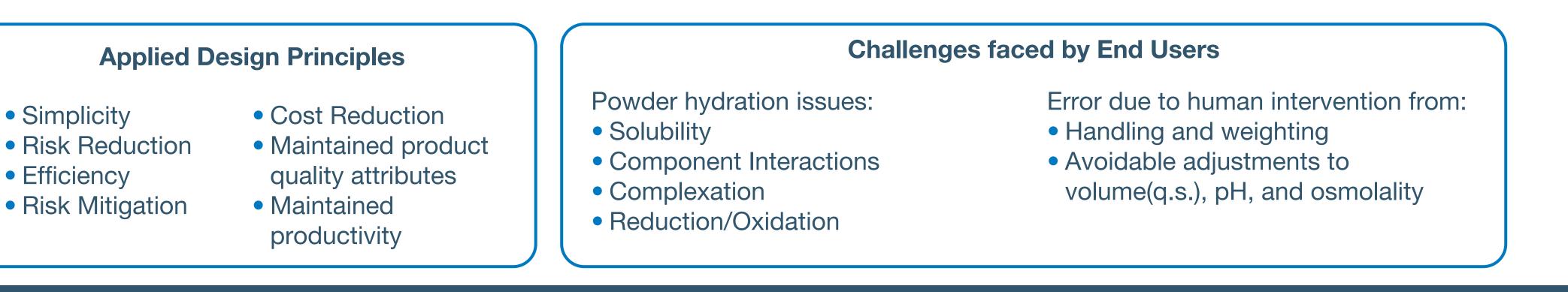


Mitigating Risk Through Simplified and **Balanced Cell Culture Media**

Michael De La Cruz* and Tom Fletcher

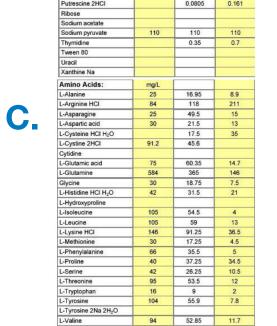
Department of Research and Development, FUJIFILM Irvine Scientific, 1830 E. Warner Ave., Santa Ana, CA 92705


*michael.de.lacruz@fujifilm.com

	Introduction		
 Three Manufacturing Science and Technology (MSAT) Service Case Studies Company A Simplify hydration method of production medium for continuous process Company B Investigate potential sources of precipitate in concentrated feed medium Company C Investigate if factors in preparation method cause the aberrant process performance 	 Manufacturers' comments specific powder-media associated problems to be avoided: Mixing and Handling Problems/Needs I would like to avoid the long mixing times required to mix the components. Consistency Problems Variation in powders is normal. We see differences [inconsistencies] between the media we purchase for GMP manufacturing and non-GMP research grinding is likely done <u>at different scale</u>, likely using different mixing equipment. Lack of Industry Information and Support Media companies are not adding value. All they do is fill our orders. Never any investigation or discussion of the powders we ask them to make. They never suggest how we could be doing things better. 	The component parts de	is the Gain ding m its
MSAT Service goals are:	 Need for Closed Systems Regulators want more closed processing or cleaner air in media prep. If all powder media 	one another and to the	improve customer xperiences, provide

• Develop user-friendly cell culture media and other process solutions for late-stage drug substance manufacturing, and cell and gene therapy process development. (focus shifts from speed to increasing efficiency and reducing risk) Improve media process workflows by:

- Simplifying preparation methods
- Reducing errors associated with avoidable adjustments, handling, and weighing
- Reduce cost by improving the reliability of the media preparation unit operation increasing the overall efficiency in the facility

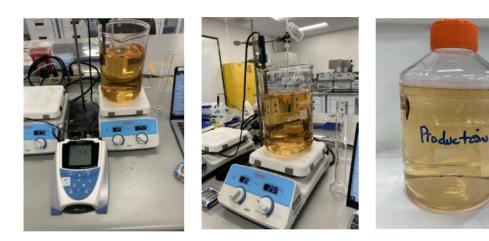

components were mixed together without **exposure to the environment**, these would be preferred and a big advantage.

Abstract

Manufacturing Science and Technology (MSAT) Service was created to develop user-friendly cell culture media and other process solutions for the late stages of drug substance and cell and gene therapy process development when customers' efforts shift from speed to market to increasing efficiency and reducing risk. These three case studies presented describe how the MSAT service collaborates with FISI's customers to improve their cell culture media process workflows by simplifying their preparation methods and rebalancing the powder formulas to reduce errors associated with avoidable adjustments, handling, and weighing. Overall, the MSAT service improved the reliability of customer's media and preparation methods, resulting in significant reduction in labor and cost.

	Case Study A							
Α.	Goal: Simplify cell culture media preparation method	The total prepara	The total preparation time was reduced from 4 hours to around 1 hour		Received positive customer feedback: "The media preparation was a wonderful experience."			
	Cacl: (anlyd.) 185 99.1 33.2 Ca(NO ₂), 4H,0 0	Final production medium powder composition:			 Customer stated: "We managed to complete 10L preparation and filtering within an hour. In contrast to the 3 to 4 hour process of manually weighing individual 			
B.	ZnS0.7/H0 0.43 0.86 Other: mgL 1 Adencine sulphate 1 Adencine S-typhosphate 1 Adencine S-typhosphate 1 Cholesterol 1 Other: 1 Quanine HCi 1 Guanine HCi 1 Guanine HCi 1 Hpote acid 0.04 Dold 0.08 Phopoxnthine Na 2.385 4.77 1 Linoleic acid 0.04 Dold 0.08 Phopoxnthine Na 2.385 Model of 15 / None 12 / None Putrescine 2HCl 0.0805 Machine SHCl 0.0805	 45% Growth medium 20% Feed medium 35% Supplement 100x liquid supplement 	 Single powder No adjustments to pH or osmolality during hydration 	 No q.s. step Glutamine and NaHCO₃ added as separate powders 	 component." "The pH and osmolality fall within right range without adjusting." 			

 Combined components to balance the formula • Engineered formula for solubility and reliable, easy preparation Reduced intervention Reduced time and labor Designed for scale-up



Customer better prepared for adopting automated Oceo Rover[™] methods – based on the same basic chemistry.

Case Study B

MSAT medium.'

Three liter medium preparation

- pH shifts from ~5 to 7 after the addition of the 100x liquid supplement, leading to full powder dissolution
- Targeted pH is achieved after sodium bicarbonate is added

risk reduction. or cost

advantages

• No q.s. step required by starting with the total vrequired volume

Goal: Identify the cause of precipitation and implement reliable preventative method

Feed medium stability failing the required 12-day storage hold. Observed in three powder qualification batches.

Observed powder clumping after just 30 minutes on the bench.

- Method
- Equipment
- Parameters

Ishikawa causeand-effect

Environment

Raw materials

- Time Batch record data

Powder

exposure.

The powder was slightly darker Light near the surface and the storage container emitted sulfur-like odor

Side-by-side EMS powders screen

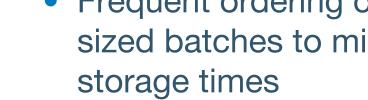
MSAT TEST MSAT TEST MSAT TEST

Data Summary of seven EMS tested powders									
.ot#	981800RD 210301	981800RD 210303	981800RD 210302	981800RD 210904	981800RD 211005	981800RD 211006	981800RD 211101		
Jame	Test #1	Test #2	Test #3	MSAT Control	L-Cysteine source Test 1	L-Cysteine source Test 2	(-) L-Cysteine deficient Contr		
Date of manufactured	03/17/21	03/18/21	03/17/21	09/02/21	10/28/21	10/28/21	11/04/21		
Number of days before used o prepare LF31 at FISI	205 (No)	204 (Yes)	205 (No)	2 (Yes) 3 (Yes) 8 (Yes)	8 (Yes)	8 (Yes)	2 (Yes)		
Passed 12-day storage test: ′es or No)				36 (Yes) 67 (No)	27 (Yes)	27 (No)			

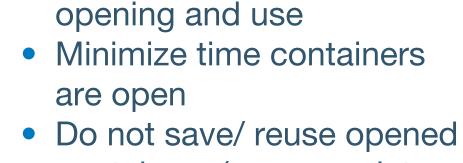
Effect of moisture on GMP powder

(-) L-Cystein Preparation 67 36 Powder storage day 43 31 30 Liquid media storage day Day 0 Day 1 Day 12

Conclusions:


- Tighter control of age and exposure of powder • Powder solubility diminish during storage after
 - 67 days in large lined bucket (5 kg)
 - 27 days in small container (1 kg)

Powder instability was due to exposure: time + moisture during storage and handling

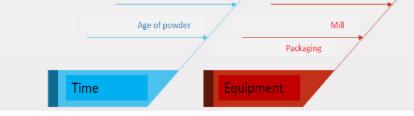

Powder degradation leads to precipitation.

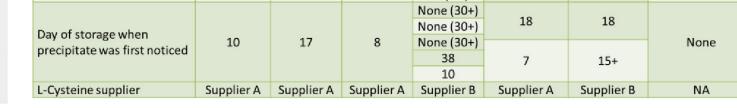
Changes implemented at FISI

- Purge mill with dry Nitrogen
- (currently practiced in cGMP)
- Control humidity in manufacturing areas
- (currently practiced in cGMP)
- Add desiccants in packaging
- Additional moisture barriers (bags)
- Identify and then implement a superior custom container/ closure system

• Frequent ordering of rightsized batches to minimize

Recommendations for


Allow packages to warm


up to ambient temp prior to

Company B

containers (use complete contents or discard excess powder if any remaining)

• Hygroscopic components in powder- Choline Chloride • Strong sulfide like odor indicates a degradation reaction • Precipitate was observed after more than 30 days of storage

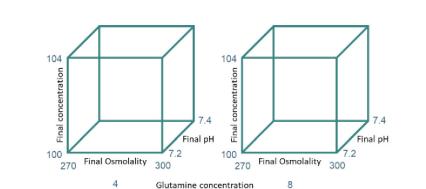
Case Study C

Goal: Investigate if factors in preparation method cause the aberrant cell culture performance

Altered metabolism and growth rate observed with liquid medium supplemented with L-Glutamine solution at point-of-use.

- Slower L-Glutamine utilization. Lag in growth.
- Premature decline in viability. Increase osmolality due to:
- Elevated lactate level-> increases base demand
- Reduced uptake of the main feed

Identified factors for Design-of-Experiment (DOE)


Factor Name	Units	Low	High
Final pH		7.2	7.4
Final osmolality	mOsm/Kg	270	300
Final concentration	%	100	104
Glutamine concentration	m/M	4	8

Two	factor	s identi	fied for	OFAT	exp	erimen	ts

Factor Name	Testeo	d Levels
Copper concentration		2x
Glutamine addition	Liquid	Powder

Variable space for full factorial design of four factors.

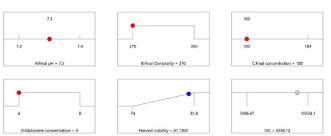
The fractional factorial design has only 8 out of the possible sixteen conditions.

Fractional factorial experiment designed to evaluate the effect of the four selected factors

ANOVA - % Harvest Ability

Generated nine prototypes for customer to conduct 20 run screening study.

D	rinal all	Final osmolality	Final concentration	Glutamine	
Kun	Final pH	(mOsm/Kg)	(%)	concentration (mM)	
1	7.2	270	100	4	
2	7.2	270	100	4	
3	7.2	270	104	8	
4	7.2	270	104	8	
5	7.2	300	100	8	
6	7.2	300	100	8	
7	7.2	300	104	4	
8	7.2	300	104	4	
9	7.3	285	102	8	
10	7.3	285	102	8	
11	7.3	285	102	8	
12	7.3	285	102	8	
13	7.4	270	100	8	
14	7.4	270	100	8	
15	7.4	270	104	4	
16	7.4	270	104	4	
17	7.4	300	100	4	
18	7.4	300	100	4	
19	7.4	300	104	8	
20	7.4	300	104	8	


Nine unique replicated conditions Resolution IV, alpha = 0.05

- Cell culture data generated using the Ambr[®]15 system and analyzed using Design-Expert[®] software.
- Higher levels of glutamine and Higher levels of glutamine appear to increase the observed lactate osmolality appear to negatively affect the % Harvest Viability concentration

ANOVA - MAX Lactate

				•		
Source	Sum of Squares	df	Mean Square	F-value	p-value	
lel	68.61	6	11.44	4.98	0.0047	significant
inal pH	7.29	1	7.29	3.17	0.0938	
inal Osmolality	29.70	1	29.70	12.93	0.0024	
inal concentration	0.0025	1	0.0025	0.0011	0.9741	
Glutamine concentration	29.16	1	29.16	12.70	0.0026	
	2.25	1	2.25	0.9798	0.3370	
	0.2025	1	0.2025	0.0882	0.7703	
dual	36.74	16	2.30			
k of Fit	3.10	3	1.03	0.3995	0.7557	not significant
e Error	33.64	13	2.59			

Optimal settings predicted to decrease lactate concentration and increase % harvest viability

The optimal set points are:

Osmolality - 270 mOsm/kg Glutamine concentration - 4 mM pH - 7.3 Final concentration - 100%.

Sum of df Mean F-value p-value

0.0991 1 0.0991 2.86 0.1079

0.0212 1 0.0212 0.6117 0.4443

0.4375 13 0.0337

1.06 22

0.4360 4 0.1090 3.15 0.0397 significant

0.1855 5 0.0371 1.10 0.4051 not significant

1 0.0008 0.0233 0.8804

Characterized media preparation process to fine tune method's set points and avoid edges of failure

Lowest growth observed in condition with all factors at the higth levels of final pH, osmolality, concentration, and Glutamine concentration.

- Higher lactate seen in conditions with lower growth
- Interaction between pH and other factors appear to negatively affect growth when tested at
- Low osmolality leads to lower lactate production.
- High osmolality overall negative effect
- High Final concentration appears to be beneficial to growth
- their high levels • High variation seen in midpoint's lactate production
- Copper effect seems to be cell line specific
- FUJIFILM Irvine Scientific, its logo, and any trademarked products used are registered trademarks of FUJIFILM Irvine Scientific, Inc. in various jurisdictions. All other trademarks are the property of their respective owners. ©2022 FUJIFILM Irvine Scientific. PN014026 Rev.00